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In  the present paper, it is intended to give the elementary solutions of three-dimen- 
sional unsteady Oseen flow when unsteady concentrated lift and/or drag is applied 
in the flow field. It is shown that the pressure fields due to concentrated impulsive 
lift and/or drag can be represented by an impulsive pressure doublet in the direction 
of the applied force and the corresponding velocity fields by diffusing free doublets in 
the direction of the external force that are shed from the location of the force applica- 
tion and convected downstream with otherwise uniform velocity. It is also confirmed 
that combination of the elementary solutions given in the present paper yields the 
two-dimensional ones. 

1. Introduction 
The elementary solutions of two-dimensional unsteady flows based on the Oseen 

approximation are given for the cases where sinusoidally varying Concentrated lift 
(&en & Crimi 1965), impulsive lift and/or drag, and sinusoidally varying lift and/or 
drag (Murata, Miyake &. Tsujimoto 1977) are applied at  a point in the flow field. The 
unsteady Oseen flows around an aerofoil and through a cascade are obtained by super- 
posing these elementary solutions (Tsujimoto et al. 1978). 

In order to describe three-dimensional Oseen flows around three-dimensional bodies, 
the elementary solution for three-dimensional flow is needed. The present report gives 
the exact solutions of that sort for the cases where impulsive and/or ainusoidally 
varying concentrated forces are applied perpendicular or parallel to an otherwise 
uniform stream. 

Any fluctuation of the force in time can be decomposed into a linear superposition 
of delta functions and hence the elementary solution for the case of an impulsive 
concentrated force is the basis of the unsteady problem. The solution for the case of 
a sinusoidally varying concentrated force at a point can be derived as an extension of 
that for an impulsive force. Moreover, an interesting feature of unsteady Oseen flow 
with a sinusoidally varying force manifests itself in its structure, i.e. the flow can be 
further decomposed into elementary parts which have a clear physical meaning. 
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2. Fundamental equations of three-dimensional Oseen flow and of the 
pressure field 

Consider the flow when a small concentrated force (X, Y ,  0) is applied a t  the origin 
of the co-ordinate system in an otherwise uniform stream in the x direction. The 
fundamental equations for an incompressible fluid are 

avx -+-++a”, av, = 0, 
ax ay az (4) 

where L, is an operator defined as 

v,, vy and v, are the velocity components of the perturbed flow, p is the static pressure 
and p the density of the fluid. 

The Oseen flow around an oscillating body immersed in a uniform stream can be 
described using the elementary solutions given below. The total velocity field is 
obtained as the superposition of the steady Oseen flow ( U  + u, v,  w) and the unsteady 
perturbed flow (vx, vy,  v,). The convection terms included in (1)-(3) are U(av,/ax) etc., 
which means that the terms u(av,/ax), etc. are omitted. Since u = - U holds on the 
wall, this omission: leads to over-estimation of the convection terms, and in con- 
sequence, the error becomes severe as the Reynolds number increases. However, the 
error due to this approximation may be smaller in unsteady flow than in steady flow, 
because the acceleration term is the dominant inertia term in the unsteady momentum 
equation. 

Differentiating (l), (2) and ( 3 )  with respect to x ,  y and z ,  respectively, and adding 
them, one obtains 

which means that the viscosity has no influence on the pressure field. 

pendicular to the flow at the origin of the co-ordinate system, i.e. 
Now consider the case in which a concentrated impulsive lift force is applied per- 

x = 0, Y = YoS(x)S(y)S(z)S(t), (6) 

where S(z) is Dirac’s impulse function, defined by S(z) = 0 when x = 0 and 
m [ S(x)dx= 1. 

J - m  
Substitution of (6) into ( 5 )  yields 

the solution of which is 

p = g&(”)‘ (7) 



Three-dimensionat unsteady Oseen $ow 61 1 

where R2 = x2+y2+z2. When the concentrated lift varies sinusoidally in time as 

X = 0, Y = Y,S(x) S(y) S(z) exp (iot) 

then the pressure field is given by (7) with S ( t )  replaced by exp (iot), where i is the 
imaginary unit. 

When a concentrated impulsive drag is applied at the origin, i.e. 

x = XOS(X) S(y) S(2) S ( t ) ,  Y = 0, 

then the pressure field becomes 

When the concentrated drag vanes sinusoidally, the pressure field is given by (8) 
with &(t) replaced by exp (id). The ease of drag produced at the origin is more con- 
veniently treated in a cylindrical co-ordinate system, for which the fundamental 
equations become 

Lp(vx) = --- ap+X, 
P ax 

vr L (v)+v-= --- 
7 8  P aY,  P r  

avx 1 a -+-- (rw,) = 0, 
ax r ar 

where 

(9) 

The velocity fields corresponding to the above-mentioned pressure field will be dis- 
cussed in the following sections. 

3. Flow induced by impulsive concentrated lift 
Now consider a function f defined as 

where R2 = (x - Ut)2 + y2 + 22 = (x - Ut)z + r2 and erfc is the complementary error 
function, defined as 

Here erf 7 is the error function and the following relations hold: 

erfco = 1, erfcco = 0. 
It is easily verified that 

Uf) = 0, L J f )  = 0. (13) 
21-2 
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FIGURE 1. Velocity distributions induced by concentrated impulsive force. 
I_ , ti, vs. I ;  ---, tiv vs. g. 

If the velocity (v l ,  v;, v:) is defined in terms off as 

then in view of (13) it follows that 

L c ( V l )  = 0, LC(Vi) = 0, L c ( V l )  = 0. 

The equation of continuity is also satisfied, i.e 
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The full description of v;, vi and vi is obtained by substituting (12) into (14): 

3y(x Rq - U t )  [l-e#c(&))-s 1 y(x- R$ Ut)  exp( -%) 4 vt (3+$)], (15) 

1 392 1 
v; = A [ ( -@ + 3) (1 - erfc (A)] + - 

2 ( V t ) 4  (nvt)* 

’ ” exp( -3 4vt ( 3 + 2 ) ] .  (17) 

In  the limit v+ 0,  the above velocities reduce to 

for which there exists the velocity potential 

r$ is in turn derived from another potential Q,, i.e. 

Q, is the velocity potential of a point source convected by a uniform stream of velocity 
U ,  so that # is a y-wise free doublet shed from the origin and convected downstream 
with the velocity U ,  r$ being derived by differentiation of Q, with respect to y. From 
these considerations, it is concluded that the velocity defined by (15)-( 17) represents 
the flow due to a y-wise free doublet which travels downstream from the origin with 
velocity U ,  experiencing viscous diffusion. The solid lines in figure 1 show the dis- 
tribution of the non-dimensional velocity Gv = v;r,3/A on the axis Z = z/ro,  which is 
perpendicular to the flow and moves with velocity U .  The dashed lines are the distri- 
butions on the other perpendicular axis, = y / ro .  The parameter k is defined as 
k = 4vt/r,2, where ro is an arbitrary normalizing length. 

The flow represented by the velocity components 

is now considered. I n  the above equation, o(t) is a step function defined by o(t) = 0 
when t < 0 and cr(t) = 1 when t 2 0. It is related to the impulse function 8(t)  by 
dv(t) /dt  = 8(t) .  In  view of the property of vj, that L,(v;) = 0,  etc., v,, vy and v, are 
found to give 

3XY 1 aP Lc(v,) = [L,(v;)]o(t)+v;S(t) = v::&(t) = A-S( t )  = --- 
R5 pax’ 

L c ( v U ) = v ; 8 ( t ) = A ( - & + g ) G ( t ) =  1 aP 
Pay’ 

P = PA(Y/R3) w. from which one obtains 
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On putting A = Yo/4n in the above equation, one finds that it is identical with (7). 
So it is concluded that a y-wise free doublet is shed from the origin at  the instant when 
an impulsive concentrated lift is applied there. The step function used in (18) means 
that this convecting doublet is born at that instant and kept alive afterwards. 

The flow induced by an impulsive line lift on the z axis is obtained from a dense 
distribution of three-dimensional elementary solutions of this type of equal intensity 
along this axis. The identity of this flow with the two-dimensional one with concen- 
trated lift at the origin can be confirmed (appendix A). 

4. Flow induced by impulsive concentrated drag 
On putting 

ay i a f  uaf - _ _ _ _ _ -  
ax2 va t  v ax 

it  is easily verified that these velocities satisfy 

Lp(wL) = 0, Lp(w:) + vz(/r2 = 0 

and the continuity equation 

The full description of wj, and w; is obtained by substituting (12) into (20): 

1 R1 Y ( X -  Ut) 3 
-- (Virt)* e x p ( - G )  Rq (@+&))' (22) 

In the limit v -+ 0, these reduce to 

3r(x- U t )  [ i2+ 3 ( ~ ; 7 7 ,  v: = A Rq ' 
v ; = A  -- 

for which there exists the velocity potential 
- 
$ = - A ( x -  Ut)/R;.  

$ is in turn derived from another potential G, i.e. 
- 

$ = &/ax, @ = A/R, .  

Since the potential 5 is identical with @, one finds that the velocities given above 
represents the flow induced by an x-wise doublet which is shed from the origin and 
travels downstream with velocity U .  Consequently, the velocities given by (21) and 
(22) correspond to the same doublet experiencing viscous diffusion. The variation of 
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V, = vAri/A with F = r/ro is identical with the ag, Z curve in figure 1 while the 2z, Z 
variation is identical with the 7jy, curve. 

Putting 

it follows that 
v, = vka(t), v, = via(t), (23) 

Lp(v,) = v68(t) = A 

L,(v,)+v- = vr 
9.2 

from which one obtains 
p = -pA(x/RS) 8(t) .  (24) 

This becomes identical with (7) when A is taken as A = Xo/4n. So, when an impulsive 
drag is applied at the origin, an x-wise free doublet is shed from the origin and travels 
downstream with velocity U ,  experiencing viscous diffusion, and the velocity of the 
flow is given by (21) and (22). The two-dimensional expression can be derived by 
distributing densely such axisymmetric elementary solutions on a line perpendicular 
to the uniform flow in a manner similar to that for concentrated impulsive lift 
(appendix B) . 

5. Flow induced by a sinusoidally varying concentrated force 
First, sinusoidally varying concentrated drag will be considered in this section. 

In  the preceding section, it is demonstrated that an x-wise free doublet of unit strength 
is shed from the origin when an impulsive concentrated drag of strength 47r is applied 
there. When the concentrated drag a t  the origin varies sinusoidally as 4nexp (iwt), 
then at each instant an x-wise free doublet of strength exp ( iwt )  is shed from the origin 
and travels downstream with velocity U ,  experiencing viscous diffusion. On the +x 
axis, there exists a row of densely distributed x-wise free doublets. It is intended to 
derive the velocity induced by this row of free doublets. Expressing the velocities as 

v, = viexp (iwt),  v, = vrexp (iwt),  

v; is calculated first. Using the above-mentioned elementary solution, one obtains 
the integral expression for vi. Putting R% = ( X - ~ ) ~ + Y ~ + Z ~ ,  this becomes after 
partial integration 
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Partial integration of the last term of this equation gives 

The first term vanishes because 

Jim {C;-k exp ( - URg/4v[)) = 0, 
5 - 4  

whence vz becomes 

The last term of the above equation reduces to 
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in which k has been replaced by U/2v ,  P2 by k2 + 2ikw/U and R2 = x2 + r2. Furthermore, 
on putting 5 = (kR/p)r], I becomes 

Using the relations 

one obtains 

Finally, vi reduces to 

vl= - ~ + / ~ m - i ~ [ ~ { l - e r f c ( ~ ( ~ ) ) }  0 5-2 
1 U '  

U 

+ (5 + $ (i R + x)) exp (kx -pR). 

I n  an entirely similar manner, one obtains 

x exp (-iu$)rEs+ ($+/3$) exp (kx-pa). (26) 

The first' terms of (25) and (26) represent the potential flow due to a source at the 
origin, whose potential is given by 4 = 1/R. The second terms are interpreted as 
follows. The velocit,ies derived from f as defined by (12), i.e. 

satisfy 
L,(v,) + vv,/r2 = 0. 

So the flow represented by these velocity components does not contribute to the 
st8atic pressure. I n  the limit v+ 0, these velocities become 

L,(v,) = 0, 

v, = -x/R,3, up = - r /R? 
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and have a velocity potential 6 = 1/R, representing a moving source with velocity U .  
Hence the second terms in (25) and (26) correspond to the velocity induced by the 
densely distributed row of sources on the + x axis, which is composed of the moving 
sources consecutively leaving the origin and experiencing viscous diffusion. 

The third terms of (25) and (26) correspond to the Oseenlet in a narrow sense. 
The velocities given by (27) and (28) do not satisfy the continuity equation, nor 

does the Oseenlet in a narrow sense. However, in (25)  and (26), the residuals cancel 
each other and together satisfy the continuity equation. This aspect is similar in the 
two-dimensional flow. 

In  the limit w -+ 0, p = U/2u and (25)  and (26) reduce to 

These are the well-known elementary solutions for steady flow (Moore 1964). 
In  addition to the drag solution considered above, the elementary solution for the 

case of sinusoidally varying concentrated lift must be found. When a concentrated 
lift which varies as 4nexp (iwt) is applied at the origin, y-wise free doublets of strength 
exp (id) are shed consecutively from the origin and form a densely distributed row 
of y-wise free doublets whose intensity decreases with increasing distance from the 
origin owing to viscous diffusion. Writing the velocities induced by this row of free 
doublets as 

u,, vy, vB = (vi, vi, v:) exp ( iwt ) ,  (29) 

vi, vi and vi are easily found to have the following form by an extension of the 
approach in $3: 

1 3y2 

+-(-) 1 U Q  (l-$)exp( -$R:)]exp( - i $ ) d ( .  (32) 
2n4 v t  
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Conversion of these expressions into oneS like those for vi and v: in (25) and (26) seems 
to be highly laborious work, except for the x-wise component. The same sequence of 
manipulations as was done for v;l: to derive (25) yields the following result for the 
vl given by (30) :  

Y PY x exp (-i$) d t +  exp ( k x - P R ) .  (33)  

The first term is due to the potential vortex, the second term to the densely distributed 
row of diffusing free vortices on the + x  axis and the last term to an Oseenlet in a 
narrow sense. 

For the purpose of evaluating lift on the basis of Oseen's approximation, it is 
possible to formulate a theory such as lifting-surface theory using (30)-(32).  

6. Conclusion 
The three-dimensional Oseen flow which occurs when a concentrated force is 

applied a t  a point in an otherwise uniform stream has been analysed. The velocity 
field produced by a concentrated impulsive force has been derived and it has been 
demonstrated that the flow field may be represented by a diffusing free doublet 
travelling with the velocity of the uniform stream. 

Also, the flow due to a sinusoidally varying concentrated force has been obtained 
as a superposition of solutions for an impulsive force and converted into a form which 
yields a clear physical picture of the structure of the flow. 

Appendix A. Derivation of two-dimensional flow from the three-dimensional 
elementary solution for concentrated lift 

It is intended to  show that a dense distribution of three-dimensional elementary 
solutions of unit strength (Yo = 1 and consequently A = 1/4n) on the z axis 
(co > z > -00) yields the two-dimensional flow when a concentrated impulsive lift 
is applied at  the origin. 

The x-wise velocity vj. of the flow is 

Partial integration using the relation 
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= [-< rl (r! + zZ)* {l-erfc(-*)]Im 0 

2 1  1 +-- la - (1 +$) exp ( -rg) dz 
7d2(vt)J 0 G + Z 2  

= - - 1 1  + - exp ( - 2) 2 j m e x p  ( - Z )  - dz 
r? r i  nt 0 4vt 2 ( V t ) )  

= --(l-exp(-$) 1 [i-erfq];) = -;(1-exp(-g)], 
r: 

Then one finds 
. = 2 ; ; ~ [ - ~ ( l - e x P ( - ~ ) ) ] .  i a  

This velocity is exactly the x component of the two-dimensional flow produced when 
a two-dimensional concentrated impulsive lift is applied at the origin. 

Next the y component will be examined. The y-wise velocity produced when a 
concentrated impulsive lift is applied at  the origin is given by (14), and as f satisfies 
L J f )  = 0, v; is given by 

Integration of this velocity yields 

The relation 

then gives 

and as a consequence 

Furthermore, since 

and v; finally becomes 

This is exactly the two-dimensional y-wise velocity produced when a two-dimensional 
concentrated impulsive lift is applied at the origin. 
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The z-wise velocity of the flow under consideration is easily found to be zero; since 
the z component of the three-dimensional elementary solution for the present case 
is an odd function of 2, the integmal with respect to z is automatically zero. 

Appendix B. Derivation of two-dimensional flow from the three-dimensional 
elementary solution for concentrated drag 

It is intended to show that a dense distribution of three-dimensional elementary 
solutions on the x axis yields the two-dimensional flow when a concentrated impulsive 
drag is applied a t  the origin. 

The x-wise velocity vj, of the A ow is 

’ 3(x - ut)2) ( 1 - erfc (A)) dz 
271 2(vt)4 

2 1  (x - Ut)2 ( - r2z2 + ”) 
+ 2 q  r% 2,Rq R4, 

+-- + ( I  - (x- PI2] ‘1 exp ( - $) dx) 
1 3(2- Ut)2 

R: R4, R, 2vt 

+ so”( - (2- Ut)Z -_ 2 22 fx- ‘“‘3) exp ( - ”) dz] ] R! 4Vt 
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2 ( x - U t ) 3  ,( 1-exp ( -- r ; ) ]  
r! 4 vt 

+ L e x p  (- 3) 9 [ 1 -erfc (A)] m] 
2 vt 4vt r2, 2(vt)4 0 

1 2 ( x -  U t ) 3  ( 1-exp ( -- r : ) )  +--exp(-g)].  1 y2 
rt 4vt 2vt r2, 

This is exactly the two-dimensional x-wise velocity produced when a two-dimen- 

The y-wise velocity is derived similarly: 
sional concentrated impulsive drag is applied at the origin. 

2)' = 1 [ S m 3 y ( x - U t ) ( l - e r f c ( ~ ) ) L  
' 2n 0 RP 2(vt)4 

' - ut)) exp ( - 3) &] +- 
2vt R2, 4vt 

2n 

--- 2 1  y ( x - U t ) / o m ( ~ + I ' + - a + . ~ ) e x p (  rfR; r2,R4, R ,  2vtR2, - a ) d z ]  n4 2 ( V t ) 4  

2y(x- U t )  2 1 --- 
n i 2 ( v t ) i  

2y(x-  U t )  2 1 

2n rf nh 2(vt)i  

= - 1 [ 2 y ( x - U t )  rf ( l - e x p (  -2)] - G y ( z - ~ t ) e x p  1 2n 

The z-wise velocity of the flow under consideration is found to be zero, since the z 
component of the three-dimensional elementary solution for the present case is zero. 
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